

Fine Tuning our Understanding of the Stellar Content of Massive Early-Type Galaxies

Alexandre Vazdekis

SÃO PAULO

XLI Reunião Anual da Sociedade Astronômica Brasileira

4 a 8 de Setembro de 2017

Early-Type galaxies

~ 10-20% of the galaxies but contain ~70% of the stellar mass of the Universe.

Are thought to be the endproducts within a hierarchical galaxy formation framework. In fact they do pose a major challenge to these models

To be constrained by looking at the stellar populations resulting from their Star Formation Histories

The stellar populations of ETGs

Both their photometric and spectroscopic properties follow tight scaling relations

Bernardi+98

Stellar populations: results from detailed spectroscopic studies

Massive ETGs older (downsizing) and more metal-rich than their lower mass counterparts

Stellar populations: results from detailed spectroscopic studies

Formation time-scale: massive ETGs not only formed the bulk of their stars earlier but fast (<1Gyr) than their low-mass counterparts

Stellar populations: abundance ratios

New modeling means allowed us to obtain detailed abundance patterns in ETGs: not only Mg but also other elements deviate from scaled-solar!

Stellar populations: nature vs. nurture

Mass, as traced by the central velocity dispersion, is the major driver of stellar populations in ETGs. However ISOLATED ETGs show slightly younger (~1-2Gyr) ages than in CLUSTERs Central galaxies of similar mass in massive halos are slightly younger than those in low mass halos. They show slightly lower [Mg/Fe] too.

Stellar populations: gradients

Long-slit on 8-10m & IFU on 4m class telescopes allowed us to reach ~1Re. Nearly constant age gradients and strong metallicity decay with radius

Age (Cyr) O.B

5

log Age (Gyr) 0.95 1

Reconstructed image

20

10

-10

-15 - 10

-5

0

DEC [arcsec]

Stellar populations: is the Initial Mass Function universal?

Nina—Ford spectral rea

IMF-sensitive atomic & molecular bands can be used to constrain the IMF of ETGs

Detailed stellar populations at high redshift

Stellar populations as old as the Universe in red luminous galaxies at z > 1 ?

ISOCHRONES: Geneva, Padova, BaSTI, Dartmouth, Lyon, Y², Victoria-Regina, Weiss+, MIST, ...

Stellar population synthesis models & main ingredients

Bruzual&Charlot, Coelho+, FSPS, GALEV, Kodama&Arimoto, Maraston &Thomas, MILES, Padova, PEGASE, Schiavon,Starburst, Worthey,YEPS...

Extended E-MILES models (miles.iac.es)

- Based on extensive fully empirical stellar spectral libraries (NGSL, MILES, Indo-US, CaT, IRTF)
- Spectral range:
 0.17-5µ
- Resolution: FWHM~2.5Å (λ<0.9µ) σ ~ 60 Kms⁻¹ (λ>0.9µ)

Spitzer Mid-IR colours: confirm that massive ETGs are well fitted by single-burst like old stellar populations as in the visible

- V [3.6] & V [4.5]: Single-burst SSP models are in good agreement with Spitzer colours of massive ETGs.
- On the contrary, SSP models do not match low-mass galaxies: the presence of younger components redden their [3.6] [4.5] colours

No need for a 1~Gyr red component with an emphasized contribution of AGB stars to fit massive ETGs, but the low-mass ETGs!

Line-strength indices in the J,H,K bands:

The Near-IR: are there intermediate-aged (AGB-dominated) stellar populations that go unnoticed in the optical range?

→ as claimed from Near-IR colours: we obtain good fits with just single-burst like old stellar populations

→ as claimed from near-IR indices:

- OLD + 3%(1Gyr + AGB-enhanced to 70% contribution) doesn't fit.
- Field ETGs could be fitted with 100% 1Gyr (however such a model doesn't fit optical indicators (e.g. Hβ)

Abundance element ratios at work

- Na2.21 behaves similarly to the CO 2.3µ. Although a bottom-heavy IMF improves the results it is not enough to match the data.
- Cluster galaxies display smaller index values than those in the field. CO & Nal2.21 indices show an unprecedented sensitivity to the environment!
- ETGs don't fall on the star's locus. Increasing the AGB contribution doesn't solve it

- Na2.21 correlates with C
- From theoretical star spectra:
 - [Na/Fe] enhancement increases Na2.21 at all temperatures
 - [C/Fe] enhancement increases Na2.21 only at very low temperature

→ A bottom-heavy IMF burst these effects and E-MLES models fit!

An alternative scenario:

From the optical range: [CN/Fe] correlates with Lx for ETGs of σ ~200 km/s. [Mg/Fe]>0 insensitive

- TG < 1 Gyr
- TG(rich cluster) < TCN
- TG(poor cluster) > TCN

UV line-strength indices

- Redder indices, e.g. Fe3000 strengthen with age much faster than in the optical
- Some (not all) indices below 3000Å peak around 2-3 Gyr (e.g., Mg2800, BL2402) for metal-rich stellar populations
- Varying behaviours offer new means to constrain the SFHs!

What about the UV?

- >**Both NUV colours & line**strengths show evidence of 0.1-0.5% mass fraction contribution of a 0.1-0.5Gyr component on the top of the old population
- These tiny contributions have \succ little impact on the visible >

~1Gyr component ruled out!

Fully consistent results with the optical and near-IR !!!

This result is fully consistent with residual SF within a passive evolution scenario with "no ex-situ" contributions

Evolution with redshift

Detailed spectroscopic analysis of individual galaxies in a massive cluster at z~0.8 (similar to Coma):

Massive galaxies are found in the denser regions evolving passively Their lower mass counterparts are located on the cluster perifery and their full spectrum-fitting show more extended SFHs.

Their linestrengths show abundance patterns already similar to Coma

Evolution with redshift

Luminous red galaxies at z~3:

SED fitting: 3Gyr + 2-7%(~0.1Gyr), With more massive galaxies requiring < 2%. (downsizing already present at z~3) (LópezCorredoira+17 a,b)

Summary: results from extending the spectral ranges

- The UV is extremely sensitive to very small (< 1%) contributions from stellar populations with ages < 1Gyr, whereas the Near-IR range shows an unprecedented sensitivity to the environment.
- Massive ETGs are well fitted with single-burst like old stellar populations all the way from the Near-UV to 5µ. Smaller ETGs show in general more extended SFHs.
- Tiny mass fractions of 0.1-0.5% of stellar components with ages 0.1-0.5Gyr are required on the top of a dominant old stellar population to be able to fit both the colours and line-strengths in the UV. Such contributions are fully consistent with residual SF.
- Similar result holds for luminous red galaxies out to z~3.
- The claim of a significant component of ~1Gyr with an emphasized AGB-contribution can be safely ruled out.
- Alternative view: the bulk of the stellar populations of intermediatemassive galaxies in denser environments form faster than the massive C-ejection timescale (<0.5Gyr). Field galaxies show enhanced [C/Fe], which when coupled with a bottom-heavy IMF, lead to stronger Near-IR Na2.21 and CO2.3 indices.

IMF in ETGs

- 40000 ETGs from the SDSS. Stacked galaxy spectra according to velocity dispersion (σ)
- More massive galaxies, with larger σ, are olde and more metal-rich.
- Use of IMF-sensitive indices:

N

Ň

0

2.8

0

N

IMF in ETGs: IMF-σ relation

IMF slope steepens withincreasing σ (galaxy mass). Massive galaxies have a larger mass fraction of stars with M<0.5Mo (~70%) than in the Milky Way (~30%).

heavy in the center & MW-like at ~1Re (Martín-Navarro+15a;La Barbera+16a) It suggests different formation scenarios for the inner/outer parts

S[a/Fe]=+0.2

IMF gradients from Na lines of very massive ETGs:

- Extremely high S/N (>400)
 X-shooter@VLT spectra.
- Extreme galaxy in the Mass-Size and M/L – σ planes
- The four Na line indices in the R, I, J and K bands can be fit well with a bottomheavy IMF and [Na/Fe]~0.6.

IMF in ETGs: behind the IMF variations

Integral Field CALIFA survey including 24 ETGs with varying mass:

- local IMF
- stellar population parameters
- kinematical properties

The IMF does not correlate with any of these parameters

but the IMF does correlate with the local metallicity!!!

Martin-Navarro+15b

IMF in ETGs: IMF at z~1.2 (~ 1/3 the age of Universe)

Massive and intermediatemassive galaxy stacks with SHARDS@GTC show similar IMF trends as found in nearby galaxies

1.00

 $<\log(M/M_{\odot})> = 10.6$

IMF of a massive compact relic galaxy (NGC 1277 in the core of Perseus cluster)

A truly old massive compact galaxy in the nearby Universe, similar to those found at high z. Progenitors of nowadays normally sized massive ETGs ?

IMF in ETGs: time varying IMF

An invariant bottom-heavy IMF prevents reaching solar metallicity (or higher) as showed by massive ETGs: if it is bottom-heavy it should have evolved with time: from top- to bottom-heavy (V+97;Weidner+13;Ferreras+15).

Summarizing IMF results

Varies with galaxy mass: massive ETGs are enhance in low-mass dwarfs (<0.5Mo), i.e. IMF slope - σ relation (Cenarro+03; Ferreras+13; LaBarbera+13)

Varies locally within massive galaxies: bottom-heavy in the center & MW-like at ~1Re (Martín-Navarro+15a;LaBarbera+16^a)

Correlates with metallicity: both global and locally (Martín-Navarro+15b)

<u>It varies with time</u>: from top to bottomheavy (V+96,97;Weidner+13;Ferreras+15)

These results favour a <u>two phase galaxy</u> <u>formation scenario</u>: a monolitic-like in-situ phase followed by a later accretion of less massive satellites (with standard IMF), which settle in galaxy perifery.

